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Abstract – This work presents a tracking control model for a flexible robotic manipulator using motor torques and 
piezoelectric actuators. The dynamic model of the flexible manipulator is obtained in a closed form through the Lagrange 
Equations. The control uses the motor torques for the joints tracking control and also to reduce the low frequency vibration 
induced in the manipulator links. The stability of this control is guaranteed by the Lyapunov stability theory. Piezoelectric 
actuators and sensors are added for vibrations with frequencies beyond the reach of motor torque control. Robots' flexible 
links are built in complex geometries, which cannot be modeled by simple beam bending Equation. In this work we propose 
a methodology for accounting the complex geometry within the realm of the Euler-Bernoulli beam theory. The natural 
frequencies are calculated by the finite element method and the approximated Eigenfunctions are interpolated by 
polynomials. Three modes are used for the dynamics of the arm, while only two modes are used for the control. 
Additionally, this work introduces a formulation for simultaneous optimization of control and actuators and sensors through 
of dissipated energy maximization in the system by the control action with location and sizing optimization of piezoelectric 
actuators and sensors in the structures. Numerical experiments on Matlab/Simulink are used to verify the efficiency of the 
control model. 
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1. Introduction 
 

The need of lightweight robots has attracted the attention 
of researchers everywhere to robotic manipulators with 
flexible links. These robots are essential in mobile 
applications, such as surface vehicles, aircrafts, and 
spacecrafts. The design of these manipulators requires a 
control system, which takes into account the interaction of 
the joint angles and the elastic modes. This complex task 
has the additional complication of the essential uncertainty 
that characterizes robotic manipulators, such as variable 
payload and joint frictional torques [1]. A flexible robot 
control design is composed by two steps: a robust tracking 
control, acting on the joint angles, and a stabilizer for the 
motion induced vibration suppression. Robotic systems can 
be considered linear in relation to some parameters, as 
mass, inertia, and damping factors, but this assumption is 
not valid for the state. Therefore, a position control law 
must be defined with an appropriate tracking error 
asymptotic stability, obtained with Lyapunov functions [2]. 
A stabilizer to damp the elastic oscillation is designed 

based on a linearized model. However, the high frequency 
modes cannot be eliminated by the motor torque action 
alone, because their period is smaller than the torque 
control system can handle. Thus, the control of those 
vibrations must use higher frequency actuators like 
piezoelectric. Robots' flexible links are built in complex 
geometries, which cannot be modeled by simple beam 
bending Eq.s. In this work we propose a methodology for 
accounting the complex geometry within the realm of the 
Euler-Bernoulli beam theory. 

The used of finite elements method for the determination 
of the eigenvectors is necessary since the analytical 
approach is cumbersome for complex non-prismatic beams. 
However, since we wish to retain the simplicity of the 
analytic derivation of the control, the eigenvectors are 
interpolated from the nodal values with polynomials [3]. 
The effectiveness of this interpolation is checked by the 
Rayleigh quotient [4]. In this work we propose a tracking 
control model for a robot arm with flexible links, where the 
motor torque controls the joint angle tracking and reduce 
the low frequency vibrations on the links. Piezoelectric 
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sensors and actuators are added to control the high 
frequency vibrations beyond the torque control. In the 
simulations it was used three modes and in the control two 
modes were used. A MATLAB code was created to assess 
the control model efficiency. 
 
2. Dynamic Model 
 

The physical system considered in this work is composed 
by a rigid and a flexible link, joints and motors, it is based 
on the robot design suggested by Bottega [5], but the 
geometry was generalized to allow non-prismatic designs. 
The second link was considered flexible and non-prismatic, 
therefore subject to motion induced vibration, which affects 
the trajectory of the endpoint. The sketch of a possible non-
prismatic flexible link is shown in Figure 1. This link has a 
linearly varying cross section. 
 

 
Figure1. Link non-prismatic and flexible. 

 
The motion of the robot endpoint is a composition of the 

successive relative link motions. This movement is 
described using homogeneous matrix transformations. 
These transformations represent translations and rotations 
due to the joints angle change and the flexible link elastic 
deflections [6]. The deflections are obtained considering 
each link as a uniform beam with 𝑎𝑖  length featuring a 
piezoceramic actuator bonded to the top face and piezofilm 
sensor bonded to the bottom face, as shown Figure 1. Links 
are modeled as Euler-Bernoulli beams, with deflection 
𝑑𝑦𝑖(𝑥𝑖, 𝑡) satisfying the partial differential equation 

 
(𝐸𝐼)𝑖

𝜕4𝑑𝑦𝑖(𝑥𝑖,𝑡)
𝜕𝑥4

+ 𝜌𝑖
𝜕2𝑑𝑦𝑖(𝑥𝑖,𝑡)

𝜕𝑡2
= 0                                       (1) 

                                                                                                                                           
Where 𝜌𝑖  is the uniform density and (𝐸𝐼)𝑖  is the flexural 
rigidity constant of the link. Exploring the time and space 
separability on Eq.(1) by the modal analysis technique, the 
link deflection can be expressed as: 
 
𝑑𝑦𝑖(𝑥𝑖 , 𝑡) = ∑ 𝜑𝑖𝑗(𝑥𝑖)𝛿𝑖𝑗(𝑡)𝑚𝑖

𝑖=1                                               (2)  
                                                                                
Where each term in the general solution of Eq.(1) is the 
product of a time harmonic function of the term δij(t) =
ejωijt and of a space eigenfunction of the form : 
 
𝜑𝑖𝑗(𝑥𝑖) = 𝑐1 sin �

𝜌𝑖𝜔𝑖𝑗
2

(𝐸𝐼)𝑖
𝑥𝑖�+ 𝑐2 cos �

𝜌𝑖𝜔𝑖𝑗
2

(𝐸𝐼)𝑖
𝑥𝑖�+ 𝑐3 sinh �

𝜌𝑖𝜔𝑖𝑗
2

(𝐸𝐼)𝑖
𝑥𝑖�+

𝑐4cosh (
𝜌𝑖𝜔𝑖𝑗

2

(𝐸𝐼)𝑖
𝑥𝑖                                                                       (3) 

                                                                     
Where ωij  is the jth natural angular frequency of the 
eigenvalue problem for link i. The determination of the 

constant coefficients Ck uses clamped conditions at the link 
base and mass boundary conditions representing the 
balance of bending moment and shearing force at the link 
endpoint. This solution is possible when the link geometry 
is prismatic or slightly non-prismatic. If the link shape is 
irregular it is very difficult to obtain a closed form analytic 
solution. It is important to generalize the approach for other 
link shapes. 
 
3. Approximating solutions for eigenfunctions 
 

The links of the mechanic manipulators are modeled as 
beams, since their lengths are much larger than the cross-
sectional height depth. Thereby, considering that the 
control can prevent large displacements, it is possible to 
apply the Euler-Bernoulli theory for a small displacements, 
where the equilibrium solution is given by 
 

∫ 𝑑2

𝑑𝑥2
𝑙
0 �𝐸𝐼 𝑑

2𝑑𝑦(𝑥)
𝜕𝑥2

� 𝑑𝑥 − ∫ 𝑝(𝑥)𝑑𝑥 = 0 ,   0 ≤ 𝑥 ≤ 𝑙 𝑙
0            (4)                                                                                                            

 
Where 𝑝(𝑥) are external forces actuating on the beam. For 
small displacements, the natural frequencies and modes can 
be considered independent of the external forces. Using the 
finite element method, it is possible to define the mass, 
stiffness and damping matrices, respectively by: 
 

𝐾𝑖𝑗 = ∫ 𝐸𝐼 𝑑
2𝜓𝑖
𝑑𝑥2

𝑙
0  

𝑑2𝜓𝑗
𝑑𝑥2

 𝑑𝑥                                                        (5)                                                                                                                                        

𝑀𝑖𝑗 = ∫ 𝜌𝑙0 𝑑𝜓𝑖𝑑𝜓𝑗 𝑑𝑥                                                           (6) 
𝐶 = 𝛼𝑀 + 𝛽𝐾                                                                         (7)     
                                                                                                                                
Where ψ are the element wise interpolation functions and 
α,β are the Rayleigh damping constants. Usually four cubic 
Hermit Polynomials are as interpolation functions in each 
two-node finite element so the unknowns of the 
approximated problem are nodal displacements and its 
derivatives. The mass matrix can be further approximated 
by its lumped (diagonal) form. Then the natural modes and 
frequencies can be computed by the following eigenvalue 
problem. 
 
|𝐾 −𝜔2𝑀| = 0                                                                       (8) 
                                                                                                             
Where ω2 are the characteristic values from the Eq.(8). The 
eigenvectors represent the vibration modes in nodal 
coordinates. Considering that the control algorithm requires 
twice differentiable eigenfunctions, it is necessary to create 
a continuous Interpolation from the discrete values. The 
natural choice would be using the same element wise 
Hermit polynomials used by the finite element 
approximation, but the eigenfunctions φ  presents big 
oscillations, due to excessive sensitivity to the numerical 
Imprecision, specially of the derivatives. For computing the 
coefficients by least-squares it is necessary to considerate 
the pseudo inverse operator A+. This operator has the 
following properties: if ATA is invertible, then A+ = (AT 
A)-1 AT, if AAT is invertible, then A+ = AT (AT A)-1. The 
coefficients from the polynomials are calculated from the 
results of the linear system   Ax = y, x = A+ y. 
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The matrix A comes from the mesh of finite element and 
y from the eigenvectors values and they are calculated 
from: 
 

𝐴 =

⎣
⎢
⎢
⎡𝑥1

𝑛 ⋯ 𝑥11 1
𝑥2𝑛 ⋯ 𝑥11 1
⋮ ⋯ ⋮ ⋮
𝑥𝑖𝑛 ⋯ 𝑥𝑖1 1⎦

⎥
⎥
⎤
 ,𝑦 = �

𝑦1
𝑦2
⋮
𝑦𝑖

�                               (9)                                                                                                                     

 
Where n is the order of the polynomials and i is the number 
of points at the mesh. All three options can eliminate the 
oscillations on the eigenfunctions, but might be inadequate 
for use in the control solution, since the differentiation and 
the integration can generate different results. For this way, 
it is interesting adopt an error criterion. In this work it is 
adopted the Rayleigh Quotient as error criterion, which for 
analytic functions can be expressed from 
 

𝜔2 =
∫ 𝐸𝐼(𝑑

2𝜑
𝑑𝑥2)2𝑑𝑥𝑙

0

∫ 𝜌𝑎𝜑2𝑙
0 𝑑𝑥

                                                   (10) 

                                                                                                              
Where a is the cross-section from the link. The discrete 
form is given by ω2 = φTKφ

φTKφ
 , where in this case φ are the 

eigenvectors. 
 
4. Equations of motion 
 

The closed form equations of motion are derived using a 
Lagrangian approach, in the form of compact matrices, 
resulting 
 
B(q)q̈ + C(q, q̇)q̇ + Kq + Dq̇ + g(q) = u         (11) 
                                                                                                                                
Where q = [θ, δ]T  is the generalized coordinates vector, 
θ is the nx1  joint coordinates vector, δ is the nx1  elastic 
modes coordinates vector, B(q)  is the positive definite 
symmetric inertia matrix, C(q, q̇)  is the Coriolis and 
centrifugal forces vector, g(q)  is the gravitational torque 
vector, K is the positive definite stiffness diagonal matrix, 
D is the positive semi definite link diagonal damping matrix 
and u is the joint input torque vector. The K  matrix is 
calculate directly by the finite element method and can be 
diagonalizable by the eigenvalues from the Eq.(8) on the 
main diagonal. The values from δ represent the amplitudes 
from the vibration modes and can be calculated from the 
equation of minimum potential energy: 
 
[𝛿𝑖]𝑇 �∫ 𝐸𝐼(

𝑑𝜑𝑖𝑑𝜑𝑗
𝑑𝑥2 )2𝑑𝑥𝑙

0 � [𝛽𝑖] − [𝑃𝑖]𝑇[𝛽𝑖] = 0 ,∀𝛽𝑖  , 𝑖, 𝑗 =

1,2, … , 𝑛                                                                                (12)                               
 
Where pi  are the forces apply about the link, n is the 
number of eigenfunctions  φ , calculated according to 
showed above and βi are virtual amplitudes introduced in 
the equation which can assumed any value. 
 
5. Tracking control 

 
This section introduces the flexible robot arm tracking 

control, based on an adaptive controller and a robust control 
law to reduce the elastic vibrations of the arms. The 
improved tracking controller using nominal compensation 
of dynamic nonlinearities of system Eq.(11) is given by: 

 
𝑢 =  𝐵( 𝑞 )�̈�𝑟  +  𝐶( 𝑞, �̇� )�̇�𝑟 +  𝐾𝑞𝑑  +  𝐷�̇�𝑟  +  𝑔( 𝑞 )  −
 𝐾𝑝  𝑠                                                                            (13)  
                           
Where Kp  is the positive definite diagonal gain matrix, 
q̇r  =  q̇ −∧ q�   is the reference velocity vector, with 
tracking error  q� = q − qd , q is the robot path, qd  is the 
desired path and s =  q̇d  −  q̇r = q �̇ + ∧ q�  is the reference 
error We can prove using Lyapanov stability theory (11) 
that with control law (13) the tracking error tend to zero 
and the deflection modes remain bounded. However, the 
damping may be too small. In this case, we can add a 
control law 𝐷△′ �̇�𝑑 , depend on tracking dynamics obtained 
from the 𝑞𝑑 variable: 

 
𝐷∆′ ≡ 𝐷∆ − 𝑑𝑖𝑎𝑔(𝑓11, … , 𝑓𝑛𝑛)                                          (14) 
                                                                                                                             
Where 𝐷∆  is the positive definite diagonal gain matrix and 
𝑓𝑖𝑗  are functions that depend on the deflection velocities. 
The Eq. (14) is added to Eq. (13) to obtain the control law 
of the system Eq. (11) expressed as: 
 
𝑢 =  𝐵( 𝑞 )�̈�𝑟  +  𝐶( 𝑞, �̇� )�̇�𝑟 +  𝐾𝑞𝑑  +  𝐷�̇�𝑟  +  𝑔( 𝑞 ) −
 𝐾𝑝  𝑠 + (𝐷∆′ �̇�𝑑)𝑇                                                              (15)  
 
Where 𝐷∆′ �̇�𝑑  is a robust control action that damps the 
system and eliminate the steady vibrations. 
 
6. Vibration control 
 

We propose a feedback control voltage to the 
piezoceramic actuator, expressed as  

 
𝑃(𝑡 ) = − 𝑐𝑎  𝐾 𝑐𝑎𝑇  �̇�𝑓 (𝑡 )                                                (16)                                                                                                                       
With 
𝑐𝑎 = 𝐸𝑏 𝐸𝑐 𝑡𝑐 𝑡𝑓 𝑑31

𝜌𝑏𝐴𝑏(𝐸𝑏𝑡𝑏+6𝐸𝑐𝑡𝑐)
�𝜑(́ 𝑥𝑎 + 𝑎𝑝𝑐� − 𝜑(́ 𝑥𝑎))               (17)                                                                                           

 
Where 𝐾𝑐  is the feedback gain, 𝐸𝑐  and 𝐸𝑏  are the elastic 
modulus of the piezoceramic and the link, respectively, 𝑡𝑐 , 
𝑡𝑓  and 𝑡𝑏  are the piezoceramic, piezofilm, and link 
thicknesses, respectively, 𝐴𝑏 is the cross section of the link, 
𝑑31 is the piezoelectric constant and 𝜌𝑏 is the mass density, 
𝑎𝑝𝑐  is the size of the actuator, 𝑥𝑎  is the localization from 
the actuator on the link,  Ṗf (t ) is the voltage generated by 
the piezofilm sensor, obtained by integrating the electric 
charge developed at a point on the piezofilm, expressed as: 
 

𝑃𝑓(𝑡) = 𝐶𝑠𝛿 = 𝐾312 𝑏𝑓
𝐶𝑔31

𝑑𝑛𝑖𝛿                                               (18)                                                                                                                                             



Mohammad Amin Rashidifar, et al., AMEA, Vol. 2, No. 1, pp. 134-140, 2012 137 
 

 

Where 𝐾312  is the electromechanical coupling factor, C is 
the capacitance of the film sensor, 𝑑𝑛𝑖 is the distance from 
the bottom of the piezofilm sensor to the neutral axis and 
𝑔31 is the piezoelectric stress constant [13]. This additional 
controller Eq.(16) is combined to the original one. The 
resulting control law for the system Eq. (15) is expressed as 
 
𝑢 =  𝐵( 𝑞 )�̈�𝑟  +  𝐶( 𝑞, �̇� )�̇�𝑟 +  𝐾𝑞𝑑  +  𝐷�̇�𝑟  +  𝑔( 𝑞 ) −
 𝐾𝑝  𝑠 + (𝐷∆′ �̇�𝑑+𝐶𝑎𝑝(𝑡))𝑇                                            (19)                                                      
 
7. Location and sizing actuators optimization 
 

Controlling structural vibration depends not only on the 
control law, but also on the selection and location of the 
actuators and Sensors. In this work we propose a 
methodology for the actuator and sensor position and sizing 
optimization, based on maximizing the control energy 
dissipation. This procedure takes into account the actuators 
and sensors mass and stiffness, and their effect on the 
mechanical behavior of the structure. This influence is 
combined to the control characteristics to obtain an 
objective function that depends on the actuators location 
and sizing and the control gain. The deflections are 
obtained considering each link as a beam with ai  length 
featuring, a piezoceramic actuator bonded to the top face 
and a piezofilm sensor bonded to the bottom face as shown 
Figure 1. The dynamic of the flexible link with m 
piezoelectric sensors and actuators in terms of modal 
coordinates can be expressed as 

 
𝐵𝛿𝛿�̈�𝑑 + 𝐶𝑑�̇�𝑑 + 𝐾𝛿𝑑 + 𝑔(𝛿) = 𝐶𝑎𝑝(𝑡)                         (20) 
                                                                                                                         
The total energy stored in the system can be expressed as 
 
𝑊 = 𝑇 + 𝑈 = 1

2
 �̇�𝑇𝐵(𝛿)�̇� + 1

2
𝛿𝑇𝐾𝛿                           (21)  

                                                                                                                   
Differentiating the Eq.(21) with respect to the time we 
obtain 
 
𝑊 = 𝑇 + 𝑈 = 1

2
 �̇�𝑇𝐵(𝛿)�̇� + �̇�𝑇𝐵(𝛿)�̈� + 1

2
𝛿𝑇𝐾𝛿         (22) 

                                                                                                                       
Using the Eq.(20) and Eq.(22) with the control law Eq.(16), 
we obtain 
 
�̇� = �̇� + �̇� = −�̇�𝑇𝐷𝛿 −̇ �̇�𝑇( 𝑐𝑎  𝐾 𝑐𝑎𝑇  𝑐𝑠)�̇� < 0            (23)  
                                                                                                                  
where the first and the second terms describe the energy 
rates removed from the system by the internal damping and 
by the control feedback, respectively. Integrating the 
Eq.(22) we obtain 
 
𝑊𝑡0 = 𝑊𝑓 + 𝑊𝑐 = ∫ �̇�𝑇𝐷𝛿 ̇∞

𝑡0
𝑑𝑡 + ∫ �̇�𝑇( 𝑐𝑎  𝐾 𝑐𝑎𝑇  𝑐𝑠)�̇� 𝑑𝑡∞

𝑡0
 

(24) 
                                                                                                                     
Where Wf  represent the energies dissipated by internal 
damping and  Wc  represent the energies dissipated by the 

control action. For effective vibration suppression, it is 
reasonable to derive a method to increase the energy 
dissipated by the control. We observe that Wc depends on 
the locations and the sizing of the actuators and feedback 
matrix gain Kc . Therefore, Wc can be used as an 
optimization criterion to determine location and sizing of 
actuator and feedback gains. For determining Wc , we write 
the Eq.(20) in state-space form as: 
 
ż = H�z                                                                            (25)  
                                                                                                                                                                                 
Where  z = [δ, δ̇]T and  
 

𝐻 = � 0 1
−𝐵𝛿𝛿−1𝐾 −𝐵𝛿𝛿−1(𝐶𝛿𝛿 + 𝐷+ 𝑐𝑎 𝐾 𝑐𝑎𝑇 𝑐𝑠)�             (26) 

 
The induced control dissipation energy by the active 
damping control  Wc can be written as 
 
Wc = ∫ zTQzdt                                                              (27) 
                                                                                                                                    
Where  
 

𝑄 = �0 0
0  𝑐𝑎 𝐾 𝑐𝑎𝑇 𝑐𝑠

�                                                    (28) 

 
it is a 2m ×  2m  matrix. Applying standard state 

transformation techniques to the Eq.(27) we obtain 
 
𝑊0 = 𝑧0𝑇𝑃𝑧0                                                                     (29) 
                                                                                                                                                           
Where P is symmetric positive definite matrix, solution of 
the Lyapanov equation 
 
𝐻�𝑇𝑃 + 𝑃𝐻� = −𝑄                                                            (30)                                                                                                                     
 

It is important that know the 𝑊𝑐  depends on the initial 
conditions of the flexible structure. In order to eliminate 
this dependence, we assume that initial state of 𝑧 satisfies 
𝑊𝑎

−1𝑧0 where 𝑊𝑎 = 𝑑𝑖𝑎𝑔(𝜆𝑖) , with random value of 𝜆𝑖>0. 
Therefore, we obtain an objective function 𝐽0 =
𝑡𝑟(𝑤𝑎𝑃𝑤𝑎)  for energy dissipated by the control which 
depends on the location and the size of the piezoelectric 
actuators and the gain 𝐾𝑐 . 

To design a precise and agile manipulator, it is 
reasonable to take it as light as possible. This is 
accomplished by adding a Function of the actuator and 
sensor masses to the objective function shown above. We 
added a quadratic term dependent on the size of the actuator 
𝑎𝑝𝑐  to 𝐽0  resulting in the following composite objective 
function 
 
𝐽0 = 𝛼𝑎𝑝𝑐2 −𝑊𝑐   

0 ≤ 𝑥𝑎 ≤ 𝑎𝑖
0 < 𝑎𝑝𝑐 + 𝑥𝑎 ≤ 𝑎𝑖

𝐾𝑐 ≤ 𝐾𝑚𝑎𝑥

                                                         (31)                                                                                                                                                        

 



Mohammad Amin Rashidifar, et al., AMEA, Vol. 2, No. 1, pp. 134-140, 2012 138 
 

 

Where 𝛼  depends on the piezoelectric material cost and 
𝐾𝑚𝑎𝑥  depends on the actuator power limitation. 
 
8. Result 
 

This work three vibration modes are used in the 
simulation, instead of two, while the control is still derived 
with two modes. The main reason behind this difference is 
to test if the control is robust enough to damp the additional 
mode. The control laws were tested on a simplified model 
robot with a rigid first link and a flexible second link as 
shown in Figure 2. Gravitational effects were ignored. The 
Lagrangian coordinate vector is 𝑞 = [𝜃1 𝜃2 𝛿1 𝛿2 𝛿3]𝑇. 
 

 
Figure2. Model of planar one-link flexible manipulator featuring 

piezoelectric actuators and sensors 
 

The results were obtained using a block-diagram 
implemented in MatLab, where the fourth-order Runge-
Kutta method with Δ𝑡 = 1  ms was used to integrate the 
equations for a five-second simulation. 

Figure 3 shows the trapezoidal speed trajectory tracking 
used with amplitude 𝜋

2
 for the joint angles 1 and 2 without 

initial Tracking Error. 
 

 
Figure3. Desired trajectory and speed of the joint angle 1 and 2. 

 
9. Simulations 

In this work, we use the mechanical and geometrical 
properties of the piezoelectric materials presented in [19]. 
Firstly, we simulated a damped system with a control law, 
Eq. (13). Figure 4 shows that the elastic deflections tend to 
zero and they are limited due to natural damping of the 
system. Figure 5 shows that the system tracking error also 
tends to zero. 
 

 
Figure4. Deflection of first, second and third modes with damping 

 

 
Figure5. Tracking error of the trapezoidal trajectory tracking 

 
In the second simulation, we used the control law given 

by Eq. (17) in the same system used before. Figure 7 shows 
an increase in the system damping and a zero convergence 
faster than the deflections. This is a result of the addiction 
of 𝐷∆�̇�𝑑 controller. 
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Figure6. Deflections of first, second and third modes for damping system 

with robust control. 
 

 
Figure6. Deflections of first, second and third modes for damping system 

with piezoelectric actuator and sensor. 
 

10. Conclusions and considerations 
 

In this work we introduced a technique for tracking and 
vibration control of a robot with flexible links. This 
technique uses the motor torque for the joint angle control 
and also for control the low frequency vibrations in the 
robot links. Piezoelectric actuators and sensors are added to 
the system to control the high frequency vibrations that 
cannot be reduced by the motor alone. We also introduced 
an optimization procedure for the size and position of the 
piezoelectric actuator and sensor, using the energy 
dissipated by the control in the objective function. This 
technique can be developed to build light manipulators with 
flexible links, while preserving the force and precision. It 
also reduces the energy consumption and suits the needs for 
aerospace systems or for tasks that demand lightness, 
precision and agility. 
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